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Abstract—The use of multiple sensors in perception systems is
becoming a consensus in the automotive and robotics industries.
Camera is the most popular technology, however, radar and
LIDAR are increasingly being adopted more often in protection
and safety systems for object/obstacle detection. In this paper,
we particularly explore the LIDAR sensor as an inter-modality
technology which provides two types of data, range (distance)
and reflectance (intensity return), and study the influence of
high-resolution distance/depth (DM) and reflectance maps (RM)
on pedestrian classification using a deep Convolutional Neural
Network (CNN). Pedestrian protection is critical for advanced
driver assistance system (ADAS) and autonomous driving, and it
has regained particular attention recently for known reasons. In
this work, CNN-LIDAR based pedestrian classification is studied
in three distinct cases: (i) having a single modality as input in the
CNN, (ii) by combining distance and reflectance measurements
at the CNN input-level (early fusion), and (iii) combining outputs
scores from two single-modal CNNs (late fusion). Distance and
intensity (reflectance) raw data from LIDAR are transformed to
high-resolution (dense) maps which allow a direct implementation
on CNNs both as single or multi-channel inputs (early fusion
approach). In terms of late-fusion, the outputs from individual
CNNs are combined by means of non-learning rules, such as:
minimum, maximum, average, product. Pedestrian classification
is evaluated on a ‘binary classification’ dataset created from the
KITTI Vision Benchmark Suite, and results are shown for the
three cases.

Index Terms—Pedestrian classification; Deep learning; LIDAR
perception system; active protection systems

I. INTRODUCTION

One of the key components comprised in Autonomous
Driving Systems (ADS) is sensory/artificial perception, which
in turns encompasses computer vision (here, including LI-
DAR “vision”), sensor-fusion, and environment representation.
Regardless of the sensors and the representation models, the
common denominator in a perception system is AI/ML based
algorithms, where deep learning has recently gained consid-
erable attention and interest from automotive and robotics
industries and academia. This paper approaches LIDAR-based
perception for pedestrian classification using Convolutional
Neural Networks (CNN), and TensorFlow, as the supervised
classifier. Pedestrian detection - which depends on a pedestrian
classification technique - is an important topic in the ITS/IV
communities and, recently, it regained more attention for
obvious reasons [1].

Although the tremendous efforts on pedestrian safety sys-
tems and ADAS technology, the number of accidents involving
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Fig. 1. Example of an image generated by a 3D LiDAR (HDL-64E Velodyne).
LIDAR scan obtained from the Object Detection Evaluation of the KITTI
dataset [6].

pedestrians is sadly very high. Therefore, the development of
more reliable and effective pedestrian detection systems (PDS)
is still a key step forward to reduce road and urban accidents.
The advances in PDS are remarkable [2]–[5], but it is a long
way to obtain a robust solution for all Operational Design
Domain (ODD) conditions. Motivated by deep-learning perfor-
mance and by the importance of perception systems for ADAS
and ADS, this paper aims to study LIDAR-based pedestrian
classification using CNN, exploring early and late information
fusion approaches. The LIDAR is a remote sensing mechanism
composed mainly of a laser and scanner (scanning system),
which provides 3D point-clouds with cartesian coordinates (x,
y and z) and also reflectance value (intensity), as shown in
Figure 1.

In this work, LIDAR is explored as a multimodal sensor
in the sense that the distance (range) and also reflectance
(intensity) are both used in the form of high-resolution maps
which have the benefit of compensating the low-resolution
of a LIDAR [7]. Hereafter, we will refer to these maps as
distance/depth map (DM) and reflectance map (RM) as shown
in Fig. 2.

Camera based pedestrian classification have been widely
addressed by the scientific community [8]–[11]. Active sensors
like automotive radar and LIDAR [6], [12], [13], on the other
hand, are more robust than cameras w.r.t. illumination changes
and also have the pro of measuring distance (a physical
property) directly. The drawbacks of LIDAR technologies are
that they are expensive, when compared to cameras, and still1

have moving parts.
Using the range data provided by a LIDAR sensor to

obtain depth maps was reported in [7], where the authors

1Some recently launched solid-states LIDAR do not use moving mecha-
nisms.



Fig. 2. This picture shows a LIDAR point-cloud (the 1st row) as projected to
the image plane (1st row), and the correspondent depth (DM) and reflectance
(RM) maps; 2nd and 3rd rows respectively.

benchmarked several techniques of estimating distance (depth)
maps by upsampling the LIDAR scans through spatial-filtering
by using increasing mask (filter) size. In the possibility of
contributing with pedestrian classification using convolutional
neural networks, this paper presents a classification study using
CNN applied to depth and also reflectance maps generated
from a 3D LIDAR. In this work we will use a “classification”
dataset built from the KITTI suite [6], however camera images
will be not used in the CNN classifier. KITTI is a state-of-
the-art benchmark for pedestrian detection in urban and road
environments.

The possibility of including depth and reflectance maps
in the CNN-classification step is studied and we show that
the sampling techniques employed to obtain high-resolution
maps from LIDAR point-clouds and various mask sizes have
different results. In this way the contribution of this paper is
a study of CNNs capacity in depth and reflectance maps for
pedestrian classification, also the evaluation of the classifica-
tion using early and late fusion strategies, with learning (CNN)
and deterministic techniques (average, minimum, maximum
and product).

The structure of this paper is as follows: in Section II related
works are revisited. The LIDAR based depth and reflectance
maps are explained in Section III. Section IV describes the
dataset, while the CNN classification technique is presented
in Section V, and sensor fusion approaches are described in
Section VI. Results and conclusions are provided in Sections
VII and VIII respectively.

II. RELATED WORK

Ensuring the safety of pedestrians on both roads and cities is
the focus of many automotive industries and also the scientific

community. One way to do this is to develop sensory per-
ception systems capable of classifying/detecting pedestrians,
since they are the baseline for ADS and ADAS. Munder and
Gavrila [2] explored the combination of SVM (support vector
machine), NN (neural networks) and KNN (K-nearest neigh-
bours) and compare global, local, adaptive and non-adaptive
analysis (PCA-main component analysis, HW-Haar Wavelets,
LRF-local receptive fields). The authors concluded that the
performance of global resources is smaller than the local
ones and that the adaptive resources are better than the non-
adaptive ones. In another study presented by [8], pedestrian
classification was performed using data from multiple domains
(light spectra: visible and infrared) and multiple modalities
(intensity, depth, and motion). In addition to providing a public
data set with infrared and visible spectra images, a study on
feature extraction of both spectra was obtained by means of
LBP (local binary patterns), LGP (local gradient patterns),
ISS (intensity self-similarity) and HOG (histogram of ori-
ented gradients), with the purpose of performing pedestrian
classification using a SVM linear classifier. The best result
was obtained by fusion of the multiple domains (visible and
infrared) with the depth modality for each feature extractor,
e.g., the fusion was not performed between feature extractors,
only between modalities and domains for each extractor.

A recent study in pedestrian detection, this time using
CNN, that includes information fusion was presented by [14].
The fusion considers the joining of four independent com-
ponents (layers): feature extraction, deformation manipulation
models, occlusion manipulation models, and classifier. These
components interact through a deep model proposed by the
authors, in which the layer of deformation is incorporated in
a CNN. Through the interaction between these independent
components, the result achieved an improvement in accuracy.
All these contributions ( [2], [8], [14]), however, did not
present detection/classification studies using data from by
LIDARs sensors, i.e., they applied pedestrian detection and/or
classification based on camera images.

Among several techniques to perform the tasks of extracting
features and classifying/detecting objects in images, such as
pedestrians, the CNN has been demonstrated to be the most
efficient in terms of classification performance. The first highly
satisfactory result using the CNN with gradient descent was
the architecture of the LeNet network presented by [15], which
classified manuscript characters with minimum pre-processing.
Without including data entry, the network consists of seven
layers: three convolution layers, two subsamplings (pooling),
a fully connected layer, and the output (last layer) to classify
ten classes. CNN technique came to be widely used after the
ImageNet ILSVRC challenge in 2012, when AlexNet CNN
[16] was ranked in the first place in the challenge. AlexNet
is similar to LeNet, but with five layers of convolution: three
pooling and two fully connected layers and with an output to
classify thousand classes. In addition to these networks, others
have been presented by several surveys, from which we cite
the best known: ResNet [17], GoogLeNet [18], VGG [19] and
ZefNet [20].



Most of the public available datasets on pedestrian classifi-
cation/detection, see [8] for a review, are image based. KITTI
dataset [6], which is the state-of-the-art dataset for urban/road
perception, has the advantage of providing synchronized and
calibrated data from monocular cameras, stereo-system, and
also 3D LIDAR scans. Furthermore, it provides examples
of “partly occluded”, “fully occlude”, “unknown” and “don’t
care” region objects, which make the classification problem
more challenging and realistic. KITTI contains several labeled
objects, such as pedestrian, car, train and cyclist, for example.
The objects are cropped off from annotated images. In this
paper we separate into two classes: pedestrian and non-
pedestrian, as described in Section IV.

In summary, this paper presents a CNN-LIDAR based
pedestrian classification study by means of the depth and
reflectance maps generated by upsampling techniques as de-
tailed in Section III. This work differs from the previously
cited papers because our CNN classifier uses only data from
a LIDAR therefore, RGB data is not feed into the CNN
classifiers neither in the fusion strategies.

III. DEPTH AND REFLECTANCE MAPS FROM LIDAR DATA

The ability to represent and model scenarios, known as envi-
ronment representation, is very important for the classification
and detection of objects in the environment as perceived by
sensors. In this Section, we describe the DM and RM maps
representations and the spatial filtering techniques we used to
obtain the LIDAR-based maps.

From a 3D point-cloud delivered by the LIDAR we can
can obtain a 2D map in pixel coordinates i.e., assuming a
calibrated LIDAR and camera’s setup a transformation from
R3 to the image-plane R2, where each point is represented
by the position in pixel coordinates; However, because of the
sparse nature of the LIDAR scans, several pixel positions in
the converted map will be unsampled. Therefore, we should
estimate the value of rai (DM) and/or rei (RM) in the
unsampled locations to obtain a high-resolution representation.
An alternative to estimate the unsampled positions is through
spatial filtering implemented by a sliding-window filter (mask)
technique.

Basically, spatial filters combine the intensity of the group
of pixels belonging to a mask M with a size n× n. Among
the numerous possible values for n, this work studied the
mask sizes 9× 9, 11× 11, 13× 13 and 15× 15. In terms of
interpolation/estimation methods, we make use of the average
(Ave), minimum (Min) and maximum (Max) operator, as well
as the inverse distance weighting (IDW) and the bilateral filter
(BF).

Let x0 = (x,y)0 denotes the location of interest, which is
the center of M, and r∗0 be the variable to be estimated, i.e.,
the range (rai) or reflectance (rei) at x0. Thus, the IDW and
BF can be expressed by:

• IDW:

r∗0 =
n

∑
i=1

Wi(x)ri (1)

TABLE I
SUMMARY OF THE CLASSIFICATION DATASET

Training set n# positives = 2827
n# negatives = 29849

Validation set n# positives = 314
n# negatives = 3316

Testing set n# positives = 1346
n# negatives = 14213

where Wi(x) = d−p
i , d = ||x0 − xi|| is a given distance

function and p is a power parameter (positive real num-
ber).

• BF:

r∗0 =
1

W ∑
xi∈M

Gσs(||x0−xi||)σR(|r0− ri|)× ri (2)

where W is a normalization factor that ensures weights
sum to one, Gσs is inversely proportional to the Euclidean
distance between the center of the M and the sampled
locations xi, and GσR controls the influence of the sampled
points based on their values ri, depending on the case the
variable ri takes the range (for DM) or the reflectance
(RM) values.

IV. CLASSIFICATION DATASET

To evaluate the techniques and approaches discussed here,
a pedestrian classification dataset was created based on the 2D
object-detection dataset of KITTI2. The classes are given in
the form of 2D bounding boxes labeled manually: ‘Pedestrian’,
‘Car’, ‘Truck’, ‘Tram’, ‘Van’, ‘Person (sitting)’, ‘Cyclist’, and
‘Misc’. In this paper the classes were separated in two cate-
gories of interest: pedestrian and non-pedestrian i.e., a binary
problem. The number of positives examples is 4487 cropped-
images (labeled bounding boxes of type ‘Pedestrian’), while
the negative class has 47378 cropped-images (types: ‘Cyclist’,
‘Car’, ‘Person (sitting)’, and so on). It was considered 70% for
the training set (10% of that for validation) and the remaining
30% for the testing set. Table I gives a summary of the dataset
used in this study.

V. CLASSIFICATION USING CNN

Among several convolutional neural networks, this paper
opted to use AlexNet CNN architecture [16] with some modi-
fications. We used batch normalization in the first two layers,
instead of the local normalization scheme, and in the last
layer we use the softmax activation function with two classes,
instead of 1000 classes, and dropout of 50%. The network
was trained from scratch for the pedestrian and non-pedestrian
classes. Through the bounding boxes provided by the KITTI
dataset, we cropped the objects contained in the depth and
reflectance maps images. The objects have different sizes and
therefore they have been resized to the same input size of the
AlexNet CNN (227×227). The network architecture is shown
in Figure 3, where Ch is the number of channels, KS is the

2www.cvlibs.net/datasets/kitti/eval object.php?obj benchmark=2d



kernel size (filter), S is the stride, Op is the convolution output,
AF is the activation function, N is the normalization function,
Dense is the number of neurons in each fully connected layer
and γ is the score.

Conv2D
KS: (11,11), S: 
(4,4), Op: 96,
AF: relu, N: 

batch

Max Pooling
KS: (3,3), S: (2,2)

Padding: (2,2)
Conv2D

KS: (5,5), S: 
(1,1), Op: 256, 

AF: relu, N: 
batch

Max Pooling
KS: (3,3), S: 

(2,2)

Padding: (1,1)
Conv2D

KS: (3,3), S: 
(1,1), Op: 384,

AF: relu

Padding: (1,1)
Conv2D

KS: (3,3), S: 
(1,1), Op: 384,

AF: relu

Padding: (1,1)
Conv2D

KS: (3,3), S: 
(1,1), Op: 256,

AF: relu

Max Pooling
KS: (3,3), S: (2,2)

Dense: 4096
AF: relu

Dropout: 0.5

Dense: 4096
AF: relu

Dropout: 0.5

Dense: 2
AF: softmax

Classify
Output

Resize
227x227xCh

Input

Pedestrian: 𝜸

Non-pedestrian: 𝟏 − 𝜸

Fig. 3. Modified AlexNet CNN architecture showing the layers of convo-
lution, pooling and classification. Ch is the number of channels, KS is the
kernel size (filter), S is the stride, Op is the convolution output, AF is the
activation function, N is the normalization function, Dense is the number of
neurons in each fully connected layer and γ is the score.

The network was trained with the following parameter
settings: 30 epochs, batch size equal 64, stochastic gradient de-
scent optimizer with lr = 0.001 (learning rate), decay = 10−6

(learning rate decay over each update), momentum = 0.9, and
categorical cross entropy as loss function.

VI. SENSOR FUSION STRATEGIES

The combination, or fusion, of data from distinct sources,
in the scope of object recognition, is usually performed by
early fusion or late fusion schemes [21]. Depending on the
terminology and context under consideration, we can designate
such schemes as centralized and decentralized fusion schemes
respectively. In the sequel, we describe the way early and later
strategies were used to combine data from DM and RM maps
for pedestrian classification.

A. Early fusion using CNN

For this case, we trained a CNN with 2 channels where
each channel received data from one of the LIDAR modalities:
the first channel, in the input layer, of the CNN received
distance/depth (DM) and the second was fed with reflectance
(RM) maps, as shown in the Figure 4.

B. Late fusion techniques

The number of methods able to combine classifiers outputs
is extensive, ranging from non-learning (deterministic) to
learning methods. In this work, we will make use of non-
learning rules to combine the CNNs outputs, namely: average,
maximum, minimum, and product. Here, the latter is used in
the form of a normalized-product (which can be understood
as a Naive Bayes rule) where additive smoothing is used to
prevent non-informative probabilities i.e., to impede values

DM

RM

Early Fusion
Resize
227x227

AlexNet
CNN

Classify
Output

Fig. 4. Early fusion scheme using a 2 channels CNN: a single CNN is trained
using one channel for DM and another channel for RM maps.

close to zero. The combination of CNN outputs is illustrated
in Figure 5.

DM

Resize
227x227

AlexNet
CNN

Classify

RM

Resize
227x227

AlexNet
CNN

Classify

OutputLate
Fusion

Fig. 5. Late fusion: a CNN is trained with 1 channel for distance/depth (DM)
and a second single channel CNN uses reflectance (RM) map. The fusion is
obtained later of the classification of each CNN.

Denoting ρi the confidence (or probability) score yielded by
deep-models CNNi, (i = 1, · · · ,m), where m is the number of
models, CNN1 denotes a CNN model using DM, and CNN2
refers to RM (reflectance) CNN-model. Four fusion rules
are considered: average FMean, maximum FMax, minimum
FMin, and smooth-product FProd . The average rule simply
calculates the simple mean of the CNN-classifiers outputs
FMean =

1
m ∑

m
i=1 ρi. The maximum rule outputs the maximum

value over the classifier responses, FMax = max{ρi}, while
the minimum rule is FMin = min{ρi}.

Assuming classifiers’ independence given the LIDAR
modalities, the smooth-product fusion rule is expressed by

FProd =
∏

m
i=1(ρi +α)

∏
m
i=1(ρi +α)+∏

m
i=1(1−ρi +α)

(3)

where α is the additive smoothing factor and m = 2 (CNN-
models based on DM and RM). The influence of α on the
smoothed scores has to be minimal in order to keep the
new values of ρ consistent with its distribution. A practical
range for α is in the interval (0,0.1]. In our experiments, we
considered α = 0.05.

VII. EXPERIMENTS AND RESULTS

All results were analyzed using F-score performance mea-
sure and ROC curves, allowing a more detailed and accurate
analysis of the results. The F-score results in Tables II and
III are reported as a function of the spatial-filter size i.e., the
mask size. The F-scores values were obtained considering a
threshold of 0.5. The number of pedestrian and non-pedestrian
examples is unbalanced, as shown in Table I, thus, F-score is



here considered because it is a suitable performance measure
for unbalanced cases. Based on the classification performance
results using single channels CNN (a CNN for DMs and
another for RMs), as shown in Tables II and III, we chose
the DM and RM maps as generated by 9× 9 mask size and
bilateral filter (BF).

TABLE II
F-SCORE RESULTS ON DMS FOR INCREASING SPATIAL-FILTER SIZE AND

FOR DIFFERENT INTERPOLATION TECHNIQUES.

Filter size Ave BF IDW Max Min
9×9 0.85 0.86 0.83 0.85 0.83

11×11 0.84 0.86 0.85 0.83 0.84
13×13 0.85 0.85 0.85 0.85 0.82
15×15 0.85 0.86 0.83 0.84 0.83

TABLE III
F-SCORE RESULTS ON REFLECTANCE MAPS (RMS).

Filter size Ave BF IDW Max Min
9×9 0.87 0.90 0.89 0.84 0.83

11×11 0.85 0.88 0.89 0.85 0.84
13×13 0.87 0.87 0.87 0.83 0.82
15×15 0.84 0.80 0.83 0.72 0.83

TABLE IV
RESULTS USING THE FUSION STRATEGIES.

Ave Max Min Prod CNN2ch
F-score 0.91 0.89 0.87 0.91 0.89

Figure 6 shows the ROC curves, calculated on the test-
ing set, for the CNN models using depth map (DM) and
reflectance map (RM) with BF’s spatial-window 9× 9. In
addition, optimal operating points for threshold equal to 0.5
are shown in the curves and the values are indicated in
the legend - designated by the superscript (◦), followed by
[FP,T P]. The curves are zoomed, both for true positive rate
(TP) and false positive rate (FP), for better visualization.

Figures 7 and 8 show the ROC curves for the fusion
strategies. The results for the deterministic fusion rules, as
described in Section VI, are shown in Fig. 7 for the early
fusion (using a 2-channel CNN), while the testing results for
the late fusion is given in Fig. 8. In Table IV we have the
F-score values for the late and early - designated by CNN2ch
- fusion strategies.

VIII. CONCLUSION AND REMARKS

This paper presented a study on pedestrian classification
based on deep-CNN and data-fusion strategies. Classification
performance evaluation is based on ROC and F-scores cal-
culated in the testing-set of a LIDAR classification dataset
generated from the KITTI Object dataset. KITTI provides
labels for a variety of categories, namely pedestrians, cyclists,
cars, vans, trains and people sitting. Therefore, we created a
‘binary classification’ dataset consisting of pedestrian and non-
pedestrian (all remaining categories). KITTI also provides the

Fig. 6. ROC curves, on the testing set, using CNN on DM and RM. AUC
stands for the Area Under the Curve.

Fig. 7. ROC curves for early-fusion scheme, which is based on a 2-channels
CNN (denoted by CNN2ch) using RM and DM maps.

corresponding LIDAR scans, which contains the 3D coordi-
nate points as well as the reflectance data. For the LIDAR
data, and by using spatial filtering, we calculated depth (DM)
and reflectance (RM) maps to allow a direct implementation
of CNN-based models.

The performances of the individually classified datasets,
measured by the F-score, achieved good results, around 85%.
When we considered fusions strategies, the results were better,
around 90%. In addition to the F-scores measures, the results
of our Bilateral filter implementation had areas under ROC
close to 99%. Observing the results of F-scores measurements
and ROC curves, the study carried out in this paper shows
the efficiency of pedestrian classification using depth and



Fig. 8. ROC curves for the late-fusion rules. Results using BF spatial-filtering
with mask size of 9×9.

reflectance maps from single LIDAR scans.
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